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Information feedback loops between CTMs and 
observations: data assimilation and targeted meas.
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Assimilation adjusts O3 predictions considerably at 
4pm EDT on July 20, 2004 p y ,

Observations: circles, color coded by O3 mixing ratio

Surface O3 (forecast) Surface O3 (analysis)
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Model predictions are in better agreement with 
observations after assimilation
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The smallest Hessian eigenvalues (vectors) 
approximate the principal error componentspp p p p

First Second Third Fourth Fifth

λ(H) 7 54e 25 1 15e 23 4 04e 23 8 47e 23 1 42e 22λ(H) 7.54e-25 1.15e-23 4.04e-23 8.47e-23 1.42e-22

λ(P) 1.33e+24 8.70e+22 2.48e+22 1.18e+22 7.04e+21

STD 
(ppb)

47 3 0.87 0.41 0.25
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4D-Var Data Assimilation of TES (Satellite) Ozone 
Profile Retrievals with GEOS-Chem

Plots from difference between background ozone field and analysis ozone field through TES 
fil i l f 2006 i GEOS Ch dprofile retrievals for 2006 summertime GEOS-Chem data

IWAQFR, December 3, 2009



Validation of GEOS-Chem Background and Analysis 
Against IONS Ozonesonde Profilesg
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Ensemble-based chemical data assimilation can 
complement variational techniques
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Covariance inflation and localization are necessary to 
compensate for small ensemble sizep

Covariance inflation:
P t filt diPrevents filter divergence
Additive
Multiplicative
Model-specific

Covariance localization:
Limit long-distance 
correlations according to 
NMC empirical ones

Ozonesonde S2 (18 EDT July 20 2004)

Correction localization:
Limit increments away from 
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Ozonesonde S2 (18 EDT, July 20, 2004)observations



LEnKF assimilation of emissions and boundaries 
together with the state can improve the forecastg p

LE KF (R2 0 88/0 42)

Ground level ozone at 14 EDT, July 21, 2004 (in forecast window)Ground level ozone at 14 EDT, July 21, 2004 (in forecast window)

LEnKF (R2=0.88/0.32)
[state only]

LEnKF (R2=0.88/0.42) 
[state + emissions + boundary]
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4D-Var Features

Pros:

considers all observations within one assimilation window at
the same time

generates analysis that is consistent with the system dynamics

Cons:

assumes constant background covariance matrix at the
beginning of each assimilation window

requires building the adjoint model
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EnKF Features

Pros:

simple concept, easy implementation

updates system states and covariance

no adjoint model required

Cons:

non-smooth analysis state flow

sampling error is large in large-scale models
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Questions

Can we better understand the relationship between variational
and ensemble based methods for data assimilation?

Can we use this understanding to build hybrid assimilation
methods that combine the strengths of both approaches?
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Hybrid Approach for Error Covariance Update

Problem: The background error covariance matrix is kept
constant between 4D-Var assimilation windows.

Solution: Update the error covariance matrix at the end of
each assimilation window.

Procedure:

Explore the 4D-Var error reduction directions.
Generate a space spanned by the error reduction.
Project the ensemble background perturbation on the
orthogonal complement of the space.

The background ensemble runs can be performed in parallel
with 4D-Var without incurring a significant computational
overhead.
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Background Ensemble Generation

Generate a set of Nens normally distributed perturbations
with mean zero and covariance Bt0 :

∆xb
i (t0) ∈ N (0,Bt0) , i = 1, . . . Nens .

Construct a background ensemble of size Nens:

xb
i (t0) = xb(t0) + ∆xb

i , i = 1, . . . ,Nens .

Propagate this ensemble to the end of the assimilation
window.

xb
i (t1) = Mt0→tF (xb

i (t0)) , i = 1, . . . ,Nens

Compute the mean xb(t1) and background ensemble
perturbation:

∆xb
i (t1) = xb

i (t1) − xb(t1)
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Subspace of Error Reduction

4D-Var optimization generates iterates

x
(j)
0 ; x

(j)
1 = Mt0→t1 (x

(j)
0 ), j = 1, . . . k.

The space spanned by the normalized 4D-Var increments

St1 =


 x

(j)
1 − x

(j−1)
1∥∥∥x

(j)
1 − x

(j−1)
1

∥∥∥




j=1,...,k

≈ span {Ut1}

Orthogonal projector onto the orthogonal complement of Ut1 :

Pt1 = I − Ut1U
T
t1
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Hybrid Ensemble Generation

Projected ensemble:

∆x
p
i (t1) = Pt1∆xb

i (t1)

Karhunen-Loève decomposition of approximate Hessian
inverse leads to approximate analysis perturbation:

H−1 =
d∑

j=1

λjwiw
T
j , ∆xHess

i =
d∑

j=1

ξi
j

√
λjwj , ξi

j ∈ N (0, 1).

Hybrid ensemble:

∆xh
i (tF ) = ∆x

p
i (tF ) + ∆xHess

i (tF ).
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Hybrid Covariance Matrix

Compute hybrid ensemble covariance matrix:

B̂h
tF

=

(
∆xh

i

)
·
(
∆xh

i

)T

√
Nens − 1

.

Localize hybrid ensemble covariance matrix:

Bh
tF

= ρ ⊗ B̂h
tF

Updated background covariance through a convex
combination of the static background covariance B0 and the
hybrid covariance Bh

tF
as:

AtF = α · B0 + (1 − α) · Bh
tF

,
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Numerical Tests on Lorenz 96 Model

dxj

dt
= −xj−1(xj−2 − xj+1 − xj) + F , j = 1, . . . 40 ,

periodic boundary conditions, F = 8.0.
The background covariance Bt0 is constructed from a 3%
perturbation of the initial state, and a correlation distance of
L = 1.5:

Bt0(i , j) = σi · σj · exp
(
−|i − j |2

L2

)
, i , j = 1, . . . , 40 .

The observation covariance matrix is diagonal from a ρ = 1%
perturbation from the mean observation values. The observation
operator H captures only a subset of 30 model states, which
includes every other state from the first 20 states plus the last 20
states.
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Analysis RMS Error Comparison
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Figure: Analysis RMSE comparison for seven assimilation windows, using
different background covariance matrices (static and hybrid covariances
with localization length L = 5, and blending factor α = 0.2; P is
projection only, P+H is projection with Hessian enhancement).
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How Similar are 4D-Var and EnKF? Analysis Assumptions

For x0 ∈ N
(
xB
0 , B0

)
. A linear, invertible model solution operator

M advances the state from t0 to tF ,

x(tF ) = M · x(t0) .

The mean background state and the background covariance at tF
are

xB
F = M · xB

0 , BF = M · B0 · MT .

A set of noisy measurements taken at tF (a single 4D-Var
assimilation window).

yF = H · xF + εF , εF ∈ N (0, RF ) .
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How Similar are 4D-Var and EnKF? Analysis Result

Proposition:

If the model is linear and invertible; the errors are Gaussian; and
observations are taken at a single time at the end of the
assimilation window;

Then the numerical solution obtained by (imperfect, preconditioned)
4D-Var is equivalent to that obtained by the EnKF method
with a small number of ensemble members.
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The Analysis Motivates a Hybrid Approach

1 Run a short window 4D-Var, and perform K + 1 iterations.
The space spanned by the direction increments has an
orthonormal basis

ṽ1, · · · , ṽK

2 Generate EnKF ensemble of K members. Replace the random
sample from the normal distribution with K directions from
the 4D-Var increment subspace (properly scaled).

3 Run EnKF for longer time.

4 Re-generate directions by another short window 4D-Var, and
repeat.
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Tests with the Nonlinear Lorenz Model
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Figure: Solution comparison (with 10 ensemble members) for the first
two components of the Lorenz state vector. Hybrid EnKF uses 4D-Var
directions obtained from 0.2 time units. 16 / 18



Tests with the Nonlinear Lorenz Model
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Figure: RMSE comparison for 10 ensemble members. Hybrid EnKF uses
4D-Var directions obtained from 0.2 time units. Errors shown are
averages of 1000 runs.
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Summary

Can we better understand the relationship between variational
and ensemble based methods for data assimilation?

Can we use this understanding to build hybrid assimilation
methods that combine the strengths of both approaches?

Hybrid approach to improve background covariance

Hybrid filter based on 4D-Var directions
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